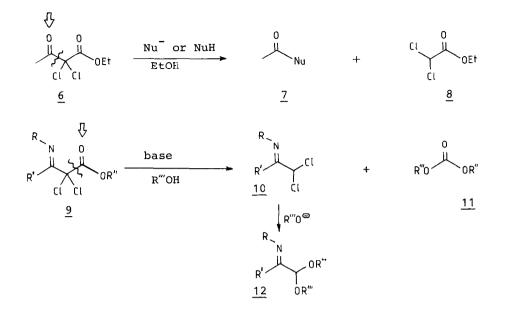

REGIOSPECIFIC NUCLEOPHILE-INDUCED FRAGMENTATION OF α,α-DICHLORO-β-IMINOCARBONYL COMPOUNDS

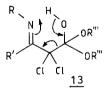
Norbert DE KIMPE,^{*}, Roland VERHE, Laurent DE BUYCK and Niceas SCHAMP Laboratory of Organic Chemistry, Faculty of Agricultural Sciences State University of Gent, Coupure Links 653, B-9000 Gent, Belgium


ABSTRACT : The reaction of α, α -dichloro- β -(N-alkyl or N-aryl)iminocarbonyl compounds with nucleophiles resulted in a regiospecific fragmentation to afford α, α -dichloroketimines.

Retro-ene type reactions have been studied already extensively in the literature. Major attention has been given to substrates containing an olefinic double bond ($\underline{1}$: Z=CR₁R₂; homoallylic alcohols), while many examples of the fragmentation of β -hydroxycarbonyl compounds $\underline{2}$ (Z=O) are known¹⁻³ (the baseinduced fragmentation of β -ketocarbonyl compounds also belongs to this category of reactions). Mechanistic studies have revealed that these thermal reactions

occur via a six-membered cyclic transition state⁴. Retro-ene reactions of β -hydroxyimines <u>3</u> (Z=NR) have been rarely reported. Examples of the latter reactions are the dealdolization of diacetone alcohol catalyzed by primary amines,⁵ fragmentation of a β -ketoaldimine⁶ and some reactions in which the imino function is a part of a heteroaromatic ring⁷⁻⁹. We would like to report now on more general retro-ene type reactions of α, α -dichloro- β -ketoimines.

On reaction with weak nucleophiles in ethanol, α, α -dichloro- β -ketoester <u>6</u> was reported to fragment at the C₂-C₃ bond yielding (ethyl) dichloroacetate <u>8</u> and carbonyl compounds <u>7</u>¹⁰. We found that the regiospecificity of this fragmentation could be reversed by masking the β -keto group as a ketimine. As a result, α, α dichloro- β -(N-alkyl of N-aryl)imino esters <u>9</u>, easily accessible from chlorination of the corresponding enaminoesters with two equivalents of N-chlorosuccinimide in carbon tetrachloride¹² or from imination of the corresponding carbonyl compounds¹³, reacted with a variety of bases (sodium methoxide, potassium t-butoxi-



de, potassium cyanide, potassium carbonate) in alcoholic medium (methanol, ethanol) under reflux to afford α, α -dichloromethylketimines <u>10</u> (Table). Catalytic amounts of the basic substances are sufficient, but the reaction can also be run at a slower rate without these catalysts. In addition, the regiospecific splitting can also be performed with sodium methoxide or potassium t-butoxide in THF or ether (at room temperature for KOtBu). The fragmentation reaction of α, α -dichloro- β -(N-alkyl)iminoesters <u>9</u> (R=alkyl) with sodium methoxide in methanol (2 N, 2 equiv) during one hour under reflux leads to N-alkyl α, α -dichloromethylketimines <u>10</u> but, under nearly the same conditions (NaOMe/MeOH, 2 N, 2 equiv, Δ 6hr), α, α -dichloro- β -(N-phenyl)iminoesters <u>9</u> (R=C₆H₅) are converted into α, α -dimethoxymethylketimine <u>12</u> (R^m = Me, R=C₆H₅) in good yield. It was already known that N-aryl α -haloketimines were much more reactive than their N-alkyl analogues toward nucleophilic substitution¹³. However, the substitution reaction (<u>10 + 12</u>) is also possible for N-alkyl derivatives under more stringent conditions (NaOMe/MeOH; 4 N; 20 equiv; Δ 24h).

Masking the carbonyl function of <u>6</u> at the 3-position as an imine resulted in a complete reversion of the site of fragmentation (i.e. C_1-C_2 fission). The more electrophilic carbonyl group in <u>9</u> is apparently selectively attacked and the final products <u>10</u> together with the corresponding dialkyl carbonate <u>11</u> are formed, possibly via cyclic transition state <u>13</u> in the case of reactions in alcohols.

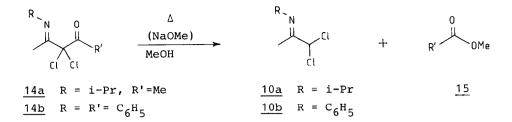

Starting Compound	R	R'	R"	Reaction Conditions	Reaction products
<u>9a</u>	i-Pr	Me	Me	NaOMe/MeOH	83% <u>10a</u> (bp 48-53°C/11 mmHg)
				lN 1.2 equiv. ∆1.7h	
<u>9a</u>	i-Pr	Me	Me	NaOMe/MeOH	86% <u>12</u> (R ^{'''} = Me; R=i-Pr)
				4N 20 equiv. A24h	
<u>9a</u>	i-Pr	Me	Me	NaOMe/ether	95% <u>10a</u>
				5 equiv. ∆45 min.	
<u>9a</u>	i-Pr	Me	Me	KOtBu/THF	90% <u>10a</u> (+ 90% di-t-Butyl car-
				2 equiv. RT lh	bonate and 10% t-Butyl methyl
					carbonate)
<u>9a</u>	i-Pr	Me	Me	к ₂ СО ₃ /МеОН	95% <u>10a</u>
				l equiv. ∆l,5h	
<u>9b</u>	^с 6 ^н 5	Me	Me	NaOMe/MeOH	70% <u>12</u> (R'''=Me; R=C ₆ H ₅) (bp
				3 equiv. 2N, $\Delta 20h$	72-78°C/0.02 mmHg)
<u>9b</u>	^С 6 ^Н 5	Me	Me	KCN/MeOH	75% <u>10b</u>
				2 equiv. ∆20h	
<u>9c</u>	^С 6 ^Н 5	Me	Et	KCN/MeOH	90% <u>10b</u>
				2 equiv. ∆8h	
<u>14a</u>	i-Pr	Me	-	NaOMe/MeOH	96% <u>10a</u>
				0,1 equiv. 0.025N ∆1h	
<u>14b</u>	^С 6 ^Н 5	^С 6 ^Н 5	-	MeOH 44h	92% <u>10b</u> (+ 100% methyl ben-
					zoate)

TABLE : Regiospecific Fragmentation of α , α -Dichloro- β -iminocarbonyl Compounds

This regiospecific fragmentation reaction is also applicable for α, α -dichlo-ro- β -iminoketones <u>14</u> as exemplified with methanol (with or without a catalytic amount of sodium methoxide).

The new reactions described in this communication allow the synthesis of 1,1-dichloro-2-alkanones following a novel efficient strategy involving conversion of a methylketone into a β -ketoester (MeOCOOMe/NaH/C₆H₆), double chlorination (SO₂Cl₂/CH₂Cl₂), imination (RNH₂/ether/TiCl₄)¹³ to afford <u>9</u>, fragmentation

(base/MeOH) and acidic hydrolysis (HCl 2N). When applied to the synthesis of 1,1-dichloro-2-propanone, this compound was obtained in 88% overall yield starting from methyl acetoacetate (via $\underline{9}$; R=i-Pr).

The reactions of imines <u>9</u> and <u>14</u> described in this communication are remarkable in that the corresponding α -halogenated carbonyl compound are known to react in a totally different way (reversed fragmentation^{10,11} or Favorskii rearrangement and subsequent decarbonylation¹⁴). Research is in progress to determine the scope and limitations of this potential reaction.

References

- * N. De Kimpe : Research Associate of the Belgian National Fund for Scientific Research.
- 1. H.M.R. Hoffman, Angew. Chem., <u>81</u>, 597 (1969).
- 2. W. Oppolzer, V. Snieckus, Angew. Chem., 90, 506 (1978).
- E.N. Marvell, M. Whalley in "The Chemistry of the Hydroxyl Group", Ed. S. Patai, Wiley, London, p. 719 (1971).
- 4. G.G. Smith, B.L. Yates, J. Chem. Soc., 7242 (1965).
- 5. R.M. Pollack, J.D. Cooper, J. Org. Chem., <u>38</u>, 2689 (1973).
- D. Armesto, A. Ramos, R. Pérez-Ossorio, Tetrahedron Letters, <u>23</u>, 5195 (1982).
- 7. I.M. Goldman, J. Org. Chem., 38, 1921 (1963).
- D.W. Hansen, Jr., J.E. Sinsheimer, J.H. Buckhalter, J. Org. Chem., <u>41</u>, 3556 (1976).
- 9. Y. Houminer, J. Org. Chem., 45, 999 (1980).
- 10. S.K. Gupta, J. Org. Chem., 38, 4081 (1973).
- 11. P.L. Stotter, K.A. Hill, Tetrahedron Letters, 4067 (1972).
- N. De Kimpe, N. Schamp, Org. Prep. Proced. Int., <u>11</u>, 115 (1979).
 For a related chlorination, see : J. Barluenga, M. Tomás, J.F. López-Ortiz,
 V. Gotor, Synthesis, 935 (1984).
- 13. N. De Kimpe, R. Verhe in "The Chemistry of Functional Groups, Supplement D", Eds. S. Patai and Z. Rappoport, J. Wiley, p. 549 (1983).
- 14. G. Büchi, U. Hochstrasser, W. Pawlak, J. Org. Chem., <u>38</u>, 4348 (1973).

(Received in UK 22 March 1985)